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Abstract  

C l a s s i f i c a t i o n  of t h e  detonat ion hazard a f t e r  i g n i t i o n  of a l a r g e  s o l i d  
propel lan t  rocket motor has i n  the  pas t  been based on s e n s i t i v i t y  t e s t  methods 
which have l i t t l e  r e l a t i o n s h i p  t o  the ac tua l  condi t ions  under which such an 
inc ident  might occur. The development of a method by which p r e d i c t i o n  of such 
an occurence i s  possible  i s  described i n  t h i s  paper. 

Experimental work has  shown t h a t  when a l a r g e  mass of an explosive or  pro- 
p e l l a n t  i s  burned i n  a closed system, a sharp change i n  s lope of t h e  burning 
ra te /pressure  curve occurs a t  a pressure which i s  s p e c i f i c  f o r  t h a t  mater ia l .  
This t r a n s i t i o n  pressure i s  dependent on the  i n i t i a l  temperature of the  mater ia l .  
For explosives  t h i s  t r a n s i t i o n  pressure i s  i n  the range of 4-8000 p s i  and is 
r e l a t e d  t o  the  s e n s i t i v i t y  of the  explosive. For propel lan ts ,  t h e  t r a n s i t i o n  
pressure is  somewhat higher  and, t h i s  pressure  as w e l l  as the  s lope of the  t r a n s -  
i t i o n  curve appears t o  be r e l a t e d  t o  t h e  phys ica l  s t a t e  and t h e  energy l e v e l  of 
the  propel lant .  

From the  t r a n s i t i o n  pressure and the  s lope of t h e  t r a n s i t i o n  curve and 
from t h e  physical configurat ion of a m i s s i l e  motor, t h e  hazard of detonat ion 
may be determined. 

To extend the  range of measurements poss ib le ,  a pressure  vesse l  has been 
developed i n  which measurements of propel lan t  burning r a t e  at  pressures  a s  high 
as  250,000 p s i  can be made. 
concentr ic  cyl inders .  Radial s t r e s s e s  a r e  taken by t h e  inner  cy l inder ,  which is 
replaceable  i f  f r a c t u r e  should occur. Recording of pressure information precedes 
f r a c t u r e  of the  inner  vessel .  The outer  cy l inder  c a r r i e s  only a x i a l  s t r e s s e s  and 
i s  of s u f f i c i e n t  s t rength  t o  prevent f r a c t u r e  and r e t a i n  fragments, 

This vesse l  has  a unique design cons is t ing  of two 

The development of t h i s  vesse l  has  a l s o  made poss ib le  t h e  examination of 
burning c h a r a c t e r i s t i c s  of cannon propel lan ts  f o r  very high pressure  appl icat ions.  
Resul ts  show t h a t  some standard cannon propel lan ts  have t r a n s i t i o n  c h a r a c t e r i s t i c s  
s imi la r  t o  those descr ibed f o r  explosives  and rocket  propel lan ts .  This phenomenon 
explains-some d i s a s t r o u s  i n c i d e n t s  r e s u l t i n g  from very high pressure  gun f i r i n g s .  

n 

Introduct ion 

I n  assessing t h e  hazard involved i n  t h e  use of a rocket  motor there  a r e  a 
number of f a c t o r s  t o  be considered. F i r s t ,  t h e  hazard of detonat ion while t r a n s -  
por t ing  the  motor from i t s  manufacturing s i te  to  p lace  of launching i n  i t s  shipping 



container .  Second, t h e  hazard of detonat ion of the propel lant  i f  the  warhead 
should explode. Third, the hazard of detonat ion of propel lant  i f  s t ruck  by 
a high explosive bomb. Fourth, the hazard of detonat ion of the propel lan t  i f  
s t ruck  by bomb fragments or  p r o j e c t i l e s .  
a normal i g n i t i o n  during launching. 

F i f t h ,  t h e  hazard of de tona t ion  a f t e r  

Actual ly ,  numbers 1 and 5 are  e s s e n t i a l l y  the same hazard - t h a t  i s  t rans-  
i t i o n  from burning t o  de tona t ion ,  while 2 ,  3 and 4 a re  e s s e n t i a l l y  shock i n i t i a -  
t ion .  

Concern with these  l a t t e r  t h r e e  problems of shock i n i t i a t i o n  a r e  genera l ly  
recognized and most p r o p e l l a n t s  a re  wel l  character ized as t o  shock s e n s i t i v i t y  
by var ious  booster  s e n s i t i v i t y  o r  pipe t e s t s .  The information obtained t e l l s  
l i t t l e  about t r a n s i t i o n  from d e f l a g r a t i o n  t o  detonat ion (DDT). This br ings  us  
t o  items 1 and 5. 

A major hazard from missile t r a n s p o r t a t i o n  and handling i s  acc identa l  
ign i t ion .  
the  m i s s i l e  case or  w i l l  it r e s u l t  i n  t r a n s i t i o n  t o  high order detonat ion? 
The di f fe rence  for  a l a r g e  motor containing tons of s o l i d  propel lant  could be 
a good f i r e  o r  a major d i s a s t e r .  I f  the  p o s s i b i l i t y  ( o r  non-poss ib i l i ty )  of 
t r a n s i t i o n  could be p r e d i c t e d ,  a much more r e a l i s t i c  approach t o  s torage  and 
handling could be adopted. 

I n  the confined condi t ion,  w i l l  t h i s  r e s u l t  i n  a pressure blow of 

The hazard of t r a n s i t i o n  t o  detonat ion a f t e r  normal i g n i t i o n  on a f i r i n g  
s tand could r e s u l t  from unknown d e f e c t s  which e x i s t  i n  a motor r e s u l t i n g  from 
manufacture, aging o r  handling. 

This repor t  descr ibes  work which has  been done thus f a r  i n  an e f f o r t  t o  
c l a s s i f y  explosives wi th  r e s p e c t  t o  t h e  p o s s i b i l i t y  of DDT under the  condi t ions  
and geometry which may a c t u a l l y  e x i s t  i n  a s o l i d  propel lan t  motor. 

Kistiakowsky (1) descr ibed  a mechanism f o r  the development of de tona t ion  
i n  a l a r g e  mass of granular  or c r y s t a l i n e  explosive i g n i t e d  thermally a t  a 
loca l ized  region wi th in  the  bulk.  A s  t h e  explosive burns, the  gases formed 
cannot escape between c r y s t a l s  and a pressure gradient  develops. This  increase  
i n  gas pressure causes an i n c r e a s e  i n  burning r a t e  which i n  t u r n  causes an in-  
crease i n  pressure with cons tan t ly  increas ing  ve loc i ty .  This condi t ion r e s u l t s  
i n  the  formation of shock waves which a r e  re inforced by t h e  energy re leased  by 
the  burning explosive and they eventua l ly  reach an i n t e n s i t y  where t h e  e n t i r e  
energy of the  reac t ion  i s  used for  propagation of t h e  shock wave and a s t a b l e  
de tona t ion  f ront  i s  produced. A c r i t i c a l  mass e x i s t s  f o r  each m a t e r i a l  above 
which t h i s  def lagra t ion  can pass  over i n t o  detonat ion under proper condi t ions.  
Below t h i s  mass the burning w i l l  f i r s t  increase  and then decrease as  t h e  
mater ia l  i s  consumed. 

. 

i l  
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The t r a n s i t i o n  t o  detonat ion i s  considered la rge ly  a phys ica l  process  
i n  which the  l i n e a r  burning r a t e  of the bed of mater ia l  increases  t o  severa l  
thousand meters per second although the individual  p a r t i c l e s  a r e  consumed 
a t  the  r a t e  of only a few meters per  second. 

The v a l i d i t y  of t h i s  mechanism has been demonstrated experimental ly  
f o r  granular  propel lan ts  by a number of workers ( 2 )  (3) (4). 

In the  experimental work described here ,  it was bel ieved t h a t  very  
similar condi t ions could be es tab l i shed  i f  a la rge  mass of explosive o r  pro- 
p e l l a n t  were burned i n  a closed chamber. It has  been shown (5) (6) t h a r  f o r  
composite propel lan ts ,  the highly e l a s t i c  binder  mater ia l  w i l l  undergo b r i t t l e  
f r a c t u r e  when s t r e s s  i s  appl ied a t  very high s t r a i n  r a t e s .  When p r o p e l l a n t s  
or explosives  are burned i n  a closed chamber the  r a t e  of pressure  b u i l d  up 
acce lera tes  s u f f i c i e n t l y  t o  develop surface s t r a i n s  i n  t h e  l a r g e  g r a i n  a t  
r a t e s  which exceed those needed t o  produce b r i t t l e  f rac ture .  Combine t h i s  
with the  embrittlement accompanying the high pressures  involved and t h e  
thermal shock produced by the  hot  gases of combustion on the  co ld  g r a i n  and 
a condi t ion equivalent  t o  t h a t  e x i s t i n g  f o r  granular mater ia l  could e x i s t .  
A f u r t h e r  v e r i f i c a t i o n  of t h i s  mechanism i s  the increased tendency of pro- 
p e l l a n t s  t o  detonate  when cooled t o  low temperatures. This problem is  w e l l  
known t o  anyone working with s o l i d  propel lants  both f o r  rockets  or cannons. 

Basis f o r  Experimental S tudies  

I f  the mechanism suggested by Kistiakowsky f o r  granular  and c r y s t a l i n e  
explosives could apply t o  s o l i d  propel lan ts  by the  mechanism suggested above, 
then i t  should be poss ib le  t o  demonstrate the increase i n  burning sur face  f o r  
such m a t e r i a l s  by burning l a r g e  pieces  i n  a closed chamber i n t h i c h  t h e  burning 
of the  mater ia l  produced the  higher  pressures  f o r  acce lera ted  burning. The 
f i rs t  i n d i c a t i o n  t h a t  such a reac t ion  ac tua l ly  might occur was found when a 
s e r i e s  of cannon propel lan ts ,  which had caused guns t o  blow up when f i r e d  a t  
temperatures of -200F and -4OOF were t e s t e d  i n  a closed chamber (7). When 
records were made of r a t e  of c h a x e  of pressure vs. pressure,  it w a s  found 
t h a t  a sharp increase  i n  r a t e  occurred a t  a pressure which was f a i r l y  s p e c i f i c  
for  each l o t  of propel lan t  tes ted .  I f  such a mechanism did  e x i s t ,  then i t  
should be demonstrable f o r  high explosives  as  well. Since the normal burning 
r a t e  laws a r e  known t o  hold f o r  both propel lan ts  and explosives  when burned 
under s t a t i c  pressure  condi t ions (as  i n  a s t rand burning rate bomb) a compari- 
son of these  two methods of burning would demonstrate t h e  ex is tance  of the  
mechanism. Calcu la t ion  of t h e  l i n e a r  burning r a t e  of a cy l inder  of m a t e r i a l  
under cons tan t ly  changing pressure from t h e  measurement o f  dp/dt  VS. pressure 
is  given i n  re ferences  (8) and (9). In t h i s  ca lcu la t ion  the  assumption i s  
made t h a t  t h e  cy l inder  i s  i g n i t e d  uniformly on a l l  sur faces  and always burns 
normal t o  t h a t  surface.  Experience with in te r rupted  burning of propel lan t  
g r a i n s  of even complicated geometry v e r i f i e s  t h i s .  I f ,  however, cracking or  
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c r a z i n g  should occur, t h e  ca lcu la ted  l i n e a r  burning r a t e  w i l l  be f a r  i n  
excess of the  va lue  expected and t h e  increase  i n  sur face  a rea  can be ca l -  
c u l a t e d  from t h i s  apparent  increase  i n  l i n e a r  burning r a t e .  

Experiments With Burning of High Explosives 

Cylinders of TNT were prepared with diameters of 1" t o  1%" and lengths  
of 1" t o  3". 
had been c a r e f u l l y  c a s t  t o  prevent poros i ty  o r  voids. A l l  cy l inders  were 
machined from the same c a s t i n g  and were considered t o  have about the  same 
c r y s t a l i n e  s t r u c t u r e .  A s e r i e s  of these were f i r e d  a t  loading d e n s i t i e s  
(weight of explosive,  grams/volume of chamber, cc)  of 0.11 t o  0.387. I n  
addi t ion ,  i n  some t e s t s  t h e  chamber was preloaded up t o  10,000 p s i  by i n -  
c luding  some very f a s t  burning mortar propel lan t  which produced the  pre- 
loading pressure before  t h e  TNT had a chance t o  burn appreciably. Figure 1 
shows some of the  t y p i c a l  osci l lograms obtained. Strands were a l s o  c u t  from 
t h e  block of TNT and were burned a t  pressures  up t o  20,000 p s i  i n  a Crawford 
s t r a n d  burning r a t e  bomb. 
f o r  a l l  the  r e s u l t s  obtained and were p l o t t e d  on a s ing le  log p lo t .  Figure 2 
shows the average curve obtained from t h i s  data .  Note the  change i n  slope 
t h a t  occurs f o r  t h e  c losed  bomb l i n e  a t  about 6,000 p s i  while the s t rand  burner 
shows the normal burning ra te /pressure  re la t ionship .  

These c y l i n d e r s  were machined from s o l i d  blocks of TNT which 

Linear burning r a t e  vs. pressure were ca lcu la ted  

A c a l c u l a t i o n  of i n c r e a s e  i n  sur face  a r e a  with pressure i s  shown i n  
F igure  3. 
s t r a n d  burner i n t o  the  equat ion used f o r  c a l c u l a t i o n  of the closed bomb 
burning r a t e  and so lv ing  f o r  sur face  a r e a  a t  d i f f e r e n t  values  of pressure.  
Note t h a t  an increase  i n  sur face  a r e a  of almost 20 times occurs. Figure 4 
g ives  the r a t i o  of c a l c u l a t e d  area/expected a r e a  f o r  a t y p i c a l  cy l inder  of 
TNT. 

This w a s  done by s u b s t i t u t i n g  t h e  burning r a t e  obtained from t h e  

Experiments of t h i s  same na ture  were made with Composition B which i s  a 

Resul t s  s i m i l a r  t o  TNT were obtained although d i f f i c u l t y  
mixture  of 60 percent  of RDX with 40 percent  of TNT with 1 percent of wax 
d e s e n s i t i z e r  added. 
i n  obtaining uniform i g n i t i o n  required the use of preloading f o r  a l l  tests. 
F igures  5, 6 ,  7 and 8 show the  d a t a  obtained f o r  Composition B. This  pre- 
t r a n s i t i o n  pressure  appears t o  be somewhat lower than f o r  TNT alone although 
d e t a i l  i n  t h i s  a r e a  of t h e  curve i s  lacking because of  the  preloading required. 

Tes ts  of Propel lan ts  

A number of experimental  and high energy propel lan ts  were then t e s t e d  
us ing  t h i s  same technique. 
double base types because of s e c u r i t y  considerat ions.  Resul t s  of these  pro- 
p e l l a n t s  are presented here ,  each one showing modif icat ions of the  same pre-  
t r a n s i t i o n  c h a r a c t e r i s t i c s .  The f i r s t  p rope l lan t ,  a double base type with 

These can only be descr ibed as composite and 
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s o l i d  oxidizer ,  when f i r e d  i n  the  closed bomb showed a somewhat exaggerated 
pre- t rans i t ion  e f f e c t  as shown i n  Figure 9. 
ca lcu la ted  t o  l i n e a r  burning r a t e  vs. p ressure  a s  f o r  TNT and Composition B. 
The r e s u l t s  a r e  shown i n  Figure 10. Note t h a t  t h e  t r a n s i t i o n  which occurs a t  
about 15,000 p s i  is even sharper  than f o r  t h e  explosives  and t h e  slope of 
the  curve i s  s teeper .  
r e s u l t i n g  from combustion of t h i s  propel lan t  as compared with t h e  explosives. 
Strand burning rated d a t a  was not a v a i l a b l e  f o r  t h i s  propel lan t  at high 
pressure. Therefore, t h e  l o w  pressure curve w a s  extrapolated.  Calculat ion 
of changes i n  sur face  a r e a  shows increases  up t o  25 times f o r  t h i s  mater ia l .  
Other samples of similar composition were t e s t e d  i n  which changes were made 
i n  t h e  p l a s t i c i z e r ;  both i n  t h e  mater ia l  used and t h e  percentage. 
changes were found t o  s h i f t  t h e  p r e - t r a n s i t i o n  pressure  up o r  down, 
e f f o r t  was made a t  t h i s  time t o  r e l a t e  t h i s  s h i f t  t o  d i f f e r e n c e s  i n  physical 
p roper t ies .  
cap. 

A series of these  tests were 

This i s  bel ieved due t o  t h e  l a r g e r  amount of energy 

These 
No 

A l l  these  samples of propel lan t  were detonable  wi th  a 116 b l a s t i n g  

A second propel lant-designated ARF’, a high energy double base t y p e g a v e  
t h e  r e s u l t s  shown i n  Figure 11. The s t r a i g h t  l i n e  burning rate curve was ob- 
ta ined with poin ts  from s t rand  burning r a t e  tests and closed bomb t e s t s  a t  loading . 
d e n s i t i e s  up t o  0.4. 
t e s t ,  a p r e - t r a n s i t i o n  change i n  s lope i n  t h e  curve r e s u l t e d  a t  about 40,000 
psi .  The pressure r a t e  was so high t h a t  a la rge  p a r t  o f  t h e  t r a c e  was l o s t .  
Extensive damage a l s o  r e s u l t e d  t o  t h e  bomb and f u r t h e r  t e s t i n g  of t h i s  composi- 
t i o n  was stopped a t  t h i s  t i m e  t o  await t h e  development of more s u i t a b l e  high 
pressure equipment. 

However, when a preloading of 15,000 p s i  was used i n  one 

A t h i r d  type of propel lan t  t e s t e d  was a composite double base - Type QZ 
manufactured by Rohm 6r Haas. This propel lan t  type was known t o  have undergone 
DDT when f i r e d  i n  a l a r g e  motor which contained some porous propel lant .  Tests 
a t  700F did not show any t r a n s i t i o n  point .  However, when cooled t o  -600F a 
t y p i c a l  p r e - t r a n s i t i o n  curve r e s u l t e d  (Figure 12) .  
p e l l a n t s ,  a number of lower energy and l e s s  s e n s i t i v e  m a t e r i a l s  were t e s t e d  
i n  t h e  bomb both with and without preloading. 
could be found wi th in  t h e  pressure l i m i t a t i o n s  of our test equipment. 

I n  a d d i t i o n  t o  these  pro- 

No i n d i c a t i o n s  of p r e - t r a n s i t i o n  

Design of Ultra-High Pressure Equipment 

Because of the  l i m i t a t i o n s  of our t e s t  equipment (80,000 p s i )  t h e  design 
of a vesse l  t h a t  would contain much h igher  pressures ,  was undertaken. 
b a s i c  design concept u t i l i z e d  was based on t h e  f a c t  t h a t  f o r  s u f f i c i e n t l y  high 
rates of loading, the  i n e r t i a  of  the  vessel w a l l s  would resist f a i l u r e  s u f f i -  
c i e n t l y  long t o  permit measurement of t h e  pressure  time h i s t o r y .  
p r a c t i c a l  uni t , two concent r ic  cy l inders  were used. 
cy l inder  contained t h e  high pressure while t h e  o u t e r  massive cy l inder  held 

The 

To make a 
The inner replaceable  
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t h e  end c losures  f o r  the i n n e r  cy l inder .  A space between the cy l inders  was 
provided f o r  expansion of  t h e  gases  i n  case of f a i l u r e  of t h e  inner  cyl inder .  
The outer  cyl inder  a l s o  served  as a confinement f o r  fragments r e s u l t i n g  from 
f a i l u r e  of t h e  inner  cy l inder ,  A l l  pressure on t h e  end c losures  i s  t rans-  
mi t ted  a x i a l l y  EO t h e  o u t e r  c y l i n d e r  which has  s u f f i c i e n t  s t rength  t o  hold 
pressures  i n  excess of  300,000 p s i  i n  t he  inner  chamber. The s e a l s  between 
t h e  inner  cyl inder  and end caps were designed t o  expand as t h e  outer  cyl inder  
s t re tched  due t o  the  pressure  development. When the inner  chamber did not  
break,  i t  w a s  found t h a t  t h e  expansion of t he  s e a l s  maintained pressure on 
t h e  end caps,  making it impossible  t o  open. Therefore ,  provis ion was made 
t o  recompress the s e a l s  wi th  a hydraul ic  r a m  t o  r e l e a s e  t h i s  pressure and 
permit opening of t he  bomb. A f t e r  many d i f f i c u l t i e s  with p a r t s  f a i l u r e s ,  
a bas ic  design shown i n  F igure  13 was evolved. An exploded view, of m e a r l y  
des ign ,  i s  given i n  Figure  14. 

Actual d e t a i l  of t h e  f i n a l  design of t h i s  vesse l  i s  no t  given h e r e  because 
i t  i s  &till undergoing changes r e s u l t i n g  from experience i n  i t s  use. Suf f ice  
i t  t o  say, t h a t  when working w i t h  the dynamic pressures  and high temperatures 
of  t h e  type encountered i n  t h i s  work, every conceivable type of f a i l u r e  has  
occurred. However, measurements of pressures  a s  high a s  250,000 p s i  have 
been made. 

Measurement of  pressures  can be made i n  t h i s  vesse l  with any type of 
pressure t ransducer  by s u i t a b l y  modifying the gage housing. I n  our i n i t i a l  
t e s t i n g ,  pressure/ t ime measurements were made using a Kistler Gage Type 601 
with a s p e c i a l  h y p e r b a l l i s t i c  probe. This gage i s  designed t o  measure 
pressures  up t o  300,000 p s i .  It i s  a p i e z o e l e c t r i c  type i n  which t h e  charge t h a t  
b u i l d  up on a quartz c r y s t a l  under compression i s  measured by means of a 
s p e c i a l  e lectrometer  c i r c u i t .  The pressure  is  t ransmi t ted  t o  the  c r y s t a l  
through a small c a r e f u l l y  ground p is ton  which extends i n t o  the pressure chamber, 

For i n t e r i o r  b a l l i s t i c  work and f o r  measurement of r a t e  of change of 
pressure i t  i s  considered more d e s i r e a b l e  t o  o b t a i n  measurements of dp/dt vs.  
pressure r a t h e r  than pressure  time. However, a t  the time t h e  work descr ibed 
below was done, such ins t rumenta t ion  w a s  not  ava i lab le .  Work being done a t  
t he  present  time i s  us ing  such measurements. 

Measurement of High Pressure  C h a r a c t e r i s t i c s  of Cannon Propel lan ts  

Following the reasoning and p r e - t r a n s i t i o n  c h a r a c t e r i s t i c s  descr ibed above 
f o r  rocket  propel lan ts ,  i t  seemed reasonable  t o  expect t h a t  a ,in?ilar pre- 
t r a n s i t i o n  mechanism might exist  f o r  cannon propel lan ts .  

Actual ly ,  over t he  p a s t  many years ,  numerous acc idents  i n  gun f i r i n s s  have 
occurred which have been d i f f i c u l t  t o  explain i n  terms of anything o ther  than 
propel lan t  malfunction. Most f requent ly  these  have occurred i n  low temperature 
f i r i n g  of propel lan ts  which func t ion  normally i n  average temperature condi t ions,  
Typical of t h i s  type of malfunct ion a r e  low temperature mortar f i r i n g s  using 

I 

1 
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i 
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M9 propel lant .  
occasions, ruptured mortar tubes. M17 propel lant  has  a l s o  been known t o  
d isp lay  e r r a t i c  b a l l i s t i c  behavior a t  -4OOF, and i n  1958 a 76MM gun w a s  blown 
up i n  such a malfunction. 

High pressures  developed under such condi t ions have, on some 

It w a s  during t h e  i n v e s t i g a t i o n  of t h i s  malfunction, t h a t  it was shown 

Under c losed  bomb 
t h a t  c e r t a i n  l o t s  of M17 propel lan t  had the  c h a r a c t e r i s t i c  of developing a 
change i n  the  burning ra te /pressure  curve (Reference 7). 
t e s t s  it was poss ib le  t o  determine which l o t s  of M17 propel lan t  would a c t u a l l y  
develop t h i s  high pressure. 
defec t ive  M17 propel lan ts  a r e  given i n  Figure 15. 

Traces showing dp/dt  vs. pressure of good and 

Up t o  t h i s  po in t ,  except f o r  the  low temperature t e s t s ,  t h e s e  t r a n s i t i o n s  
have only been noted i n  rocket  propel lan ts  and explosives  on an experimental  
basis .  Cannon propel lan ts  have been used i n  these pressure ranges r a t h e r  
camnonly with no such e f f e c t s ,  except for  occasional ly  unexplained malfunc- 
t ions.  One such malfunction occurred recent ly ,  when a gun designed f o r  
86,000 p s i  max pressure was destroyed with T36 cannon propel lan t  when an 
increase  i n  charge weight of about 2 percent t o  increase pressure  above 
70,000 p s i ,  caused an increase  i n  max pressure of over 100 percent .  

With the development of t h e  u l t r a  high pressure closed bomb, capable of 
t e s t i n g  propel lan ts  at much higher  pressures  than previously,  it became poss ib le  
t o  determine i f  the  same type of behavior demonstrated f o r  rocke t  propel lan ts  
and explosives  could be shown cannon propel lan ts  a t  high pressures .  AM17 
propel lant  of 0.045 web was loaded i n t o  t h i s  new bomb at  a loading d e n s i t y  of 
.40. Figure 16 i s  t h e  
pressure/ t ime t r a c e  obtained. 
t h i s  pressure r i s e  (about 92,000 p s i )  there  i s  a v e r t i c a l  rise of i n d e f i n i t e  
magnitude before the  t r a c e  r e t u r n s  t o  low pressure. This  i s  i n d i c a t i v e  of 
t r a n s i t i o n  t o  detonat ion having taken place a f t e r  90 percent  of the  propel lan t  
has  been burned. Other evidence of the  detonat ion i n s i d e  the  bomb w a s  t h e  
f r a c t u r e  of the  inner  cy l inder  which had been ca lcu la ted  t o  hold i n  excess  of 
150,000 p s i ,  and a d e f i n i t e  s p a l l i n g  condi t ion e x i s t i n g  i n  some of t h e  f rag-  
ments of the inner  cy l inder .  
cracked a l l  t h e  way through. 

A maximum pressure  of  105,000 p s i  was an t ic ipa ted .  
Careful examination shows t h a t  a t  the  end of 

The massive end plug of t h e  bomb w a s  a l s o  

Af te r  r e p a i r s  were completed t o  the apparatus, t e s t s  were then made of  
T28 propel lan t  using t h e  same conditions. 
t race .  While t h e  burning t i m e  was much shor te r ,  a maximum pressure  of  105,000 
p s i  was obtained with no unusual inc ident  i n  the  bomb t o  indicate a t r a n s i t i o n  
e f f e c t .  
times t o  v e r i f y  t h i s .  
t i o n  was avai lable .  
be ava i lab le .  

Figure 15 shows the  pressure/ t ime 

T28 propel lan t  h a s  been f i r e d  at  .40 loading dens i ty  a number of 
A t  the  t i m e  of these  tests only pressure/ t ime informa- 

For f u t u r e  work it i s  expected t h a t  dp/dt VS. pressure  w i l l  
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These r e s u l t s  f i t  i n  very w e l l  with the  mechanism s t a t e d  previously. 
M 1 7  p rope l lan t  and 'I26 propel lan t  are very s imi la r  i n  energy level .  Their  
b a s i c  d i f fe rence  i s  i n  compressive s t rength  and t h e  d i f f e r e n c e  i n  the  homo- 
genie ty  of t h e i r  s t r u c t u r e .  M17 propel lan t  i s  notor ious ly  poor a s  f a r  as 
compressive s t r e n g t h  i s  concerned although with some modif icat ion i n  pro- 
cess ing ,  improvement h a s  been made as with T36 propel lant .  

It i s  i n t e r e s t i n g  t o  note  t h a t  i n  high pressure gun f i r i n g s  with M17 
propel lan t ,  t h e  t r a n s i t i o n  e f f e c t  of  T36 which o r i g i n a l l y  was demonstrated 
above 70,000 p s i  w a s  found f o r  M17 propel lan t  t o  begin a t  50,000 ps i .  

The very sketchy n a t u r e  of  t he  work presented here  i s  the  r e s u l t  of  a 
very l imited s tudy of cannon propel lan t  burning under very high pressure 
condi t ions.  However, we be l ieve  i t  i s  s i g n i f i c a n t  enough t o  be reported at 
t h i s  time. 

Conclusions 

I n  the work presented  here in ,  t h e r e  i s  d e f i n i t e  evidence t h a t  the process 
of  t r a n s i t i o n  from d e f l a g r a t i o n  t o  detonat ion fo r  explosives  and propel lan ts  
i s  a continuous r e a c t i o n  c o n s i s t i n g  of f i r s t  - i g n i t i o n ;  second - under con- 
f ined  condi t ions (such as might e x i s t  i n  a l a r g e  mass of mater ia l  o r  porous 
mater ia l )  a pre-detonat ion r e a c t i o n  cons is t ing  of acce lera ted  burning due 
t o  a physical  breakdown of t he  sur face  r e s u l t i n g  from the  pressure,  r a t e  of 
change of pressure and temperature grad ien t ;  t h i r d  - development of an 
a c c e l e r a t i n g  shock f r o n t ;  f o u r t h  - detonat ion i f  s u f f i c i e n t  mass of mater ia l  
i s  ava i lab le .  

It i s  be l ieved  t h a t  any m a t e r i a l  which can be detonated should e x h i b i t  
t h i s  pre-detonation r e a c t i o n .  I n  t h e  case of very s e n s i t i v e  primary explosives  
t h e  l e v e l  of c o n t r o l l i n g  parameters required t o  s t a r t  detonat ion i s  so low 
t h a t  they cannot be measured by present  techniques. For "non-detonable" pro- 
p e l l a n t s  the pressures  requi red  fo r  t h e  pre-detonat ion r e a c t i o n  t o  occur a r e  
so high t h a t  f o r  a l l  p r a c t i c a l  purposes, they cannot be a t ta ined .  

It i s  considered p r a c t i c a l  t h a t  t h i s  technique can be  used f o r  t he  c l a s s i -  
f i c a t i o n  of t he  de tona t ion  hazard f o r  a p a r t i c u l a r  motor configurat ion i f  the 
p r e - t r a n s i t i o n  pressure 'and  s lope  of  t h e  burning r a t e  pressure  curve of t he  
propel lan t  used i s  known. Thus, fo r  example, i f  a defec t  or  void should e x i s t  
i n  a propel lan t ,  which might conceivably i g n i t e  on f i r i n g ,  by consider ing such 
an  i g n i t i o n  as an i n t e r i o r  b a l l i s t i c  system t h e  pressure and r a t e  of  pressure 
r ise can be c a l c u l a t e d  t o  determine i f  pre-detonat ion condi t ions  could develop 
before  t e n s i l e  f a i l u r e  of  t h e  g r a i n  occurred. I f  such r e a c t i o n  can occur then 
t h e  acce lera ted  p r e s s u r e  r i se  could develop t h e  shock f r o n t  necessary f o r  t rans-  
i t i o n  t o  detonat ion.  
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